ISOCYANATE DURCH PHOTOLYSE VON 8-KETOSÄUREAMIDEN +

Von J. Reisch und D. Niemeyer

Aus dem Institut für pharmazeutische Chemie der Westfälischen Wilhelms-Universität Münster

(Received in Germany 28 March 1968; received in UK for publication 29 April 1968)

Die Photo-Fries-Umlagerung einiger N-Arylamide von Sulfonsäuren (1), der N-Acyl- und N
Aroylanilide (2) und ähnlicher Verbindungen wie Phenylurethan (3) und Carbonsäure-en-amiden (4,5) ist in der letzten Zeit eingehender untersucht worden. Neben irreversibler Abspaltung der ArSO₂-, ArCO- oder RCO-Gruppe tritt eine intramolekulare 1,3- oder 1,5-Verschiebung dieser Gruppen auf (6).

UV-Bestrahlung von ß-Ketosäureamiden des Typs R-COCH₂CONH-R' führt nicht zu den Fries-Umlagerungsprodukten, sondern es tritt eine Molekülspaltung zum Isocyanat und dem entsprechenden Keton auf:

$$R-COCH_2CONH-R' \xrightarrow{h \cdot \gamma} RCOCH_3 + OCNR'$$

Dieses Reaktionsverhalten konnte bei folgenden Verbindungen beobachtet werden:

	R	R'	Ausbeute an R'NCO	Bestr Dauer	Lsgm.
a)	Ph	Ph	60%	5 h	C ₆ H ₆
b)	Ph	p-CH ₃ Ph	50%	11	11
c)	Ph	p-CH ₃ Ph \sim -C ₁₀ H ₇ PhCH ₂	44%	††	C ₆ H ₆ /Dioxan 1:1
d)	Ph	PhCH ₂	32%	11	C ₆ H ₆
e)	CH ₃	Ph	18%	11,	11
f)	СН ₃ СН ₂ СН ₂	Ph	17%	11	**

a) Org. Syntheses 25, 7 (1949); b) J. Amer. chem. Soc. 79, 2919 (1957); c) Analog (a) hergestellt, F = 168-70; d) Boll. sci. Fac. chim. Ind. Bologna, referiert in C. A. 53, 9680 b (1959); e) J. biol. Chemistry 141, 171 (1941); f) Analog (a) hergestellt, F = 89-90.

Der Photospaltung von Acetessigsäureanilid (e) entspricht die Thermolyse, die bei 540°C ebenfalls Phenylisocyanat und Aceton liefert (7).

Experimentelles: 0,01 Mol a - f in 500 ml abs. Lösungsmittel wurden in einer 50 Watt Nieder-druck-Hg-Quarzlampe (Fa. Gräntzel, Karlsruhe) unter N₂-Atmosphäre bei 15-18^oC bestrahlt.

Die Isocyanate wurden durch Einleiten von NH₃ nach (oder während) der Bestrahlung über ihre Harnstoffderivate, die Ketone über ihre 2,4-Dinitrophenylhydrazone durch Vergleich mit authentischem Material identifiziert.

Zur quantitativen Bestimmung der Isocyanate wurden jeweils 10 ml der bestrahlten Lösung mit einem Überschuß an Di-iso-butylamin versetzt und das nicht umgesetzte Amin mit n/10 HCl gegen Bromphenolblau zurücktitriert (8).

Dem Fonds der Chemischen Industrie danken wir für die Förderung dieser Untersuchungen.

LITERATUR

- +) VI. Mitteilung: Photo- und Strahlenchemische Studien. V. Mitteilung: J. Reisch u. A. Fitzek, <u>Dtsch. Apotheker-Ztg.</u> 107, 1358 (1967)
- (1) H. Nozaki, T. Okada, R. Noyori u. M. Kawanisi, Tetrahedron 22, 2177 (1966)
- (2) D. Elad, D.V. Rao u. V. J. Stenberg, J. org. Chemistry 30, 3252 (1965)
- (3) D. Belluš u. K. Schaffner, Helv. chim. Acta <u>51</u>, 221 (1968)
- (4) N.C. Yang u. G.R. Lenz, Tetrahedron Letters 48, 4897 (1967)
- (5) A. Eschenmoser, Pure appl. Chemistry 7, 297 (1963)
- (6) Übersichtsreferat: D. Belluš u. P. Hrdlovič, Chem. Reviews 67, 599 (1967)
- (7) T. Mukaiyama, M. Tokizawa, H. Nohira u. H. Takei, J. org. Chemistry 26, 4381 (1961)
- (8) W. Siefken, Liebigs Ann. Chem. 562, 75 (1949)